Geometric Series

mathematics

Jan 12, 2025 - 03:19
 0  6

Graphical illustration of an infinite geometric seriesClearly, the sum of the square's parts (12, 14, 18, etc.) is 1 (square). Thus, it can be seen that 1 is the limit of this series—that is, the value to which the partial sums converge.

geometric series, in mathematics, an infinite series of the forma + ar + ar2 + ar3+⋯, where r is known as the common ratio. A simple example is the geometric series for a = 1 and r = 1/2, or1 + 1/2 + 1/4 + 1/8 +⋯, which converges to a sum of 2 (or 1 if the first term is excluded). The Achilles paradox is an example of the difficulty that ancient Greek mathematicians had with the idea that an infinite series could produce a finite sum. The confusion around infinity did not abate until the 18th century, when mathematicians developed analysis and the concept of limits.

The sum of the first n terms of a geometric series is equal to a(1 − rn)/(1 − r). If the absolute value of r is less than 1, the series converges to a/(1 − r). For any other value of r, the series diverges.

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow

admin Ridaxia.com administration